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Abstract

The distributed sensor network (DSN) presents a novel and highly complex

computing platform with difficulties and opportunities that are just beginning

to be explored. The potential of sensor networks extends from monitoring for

threat reduction, to conducting instant and remote inventories, to ecological sur-

veys. Developing and testing for robust and scalable applications is currently

practiced almost exclusively in hardware.

The Distributed Sensors Simulator (DSS) is an infrastructure that allows the

user to debug and test software for DSNs independent of hardware constraints.

The flexibility of DSS allows developers and researchers to investigate topo-

logical, phenomenological, networking, robustness and scaling issues, to ex-

plore arbitrary algorithms for distributed sensors, and to defeat those algo-

rithms through simulated failure. The user specifies the topology, the environ-

ment, the application, and any number of arbitrary failures; DSS provides the

virtual environmental embedding.
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Chapter 1

Ubiquitous Computing and

Distributed Sensor Networks

In 1999, the Smart Dust initiative was launched from the work of UC Berke-

ley professor Kris Pister with major funding from the Defense Advanced Re-

search Projects Agency (DARPA). The project’s three-year goal was to create an

autonomous processing and communication platform, of just a single cubic mil-

limeter in size, for a wide variety of sensors. The enormous potential for defen-

sive and offensive capabilities of such systems obviously drew the attention of

DARPA . Yet if, as has been predicted, these devices become incredibly inexpen-

sive, civilian applications of this technology are likely to become as widespread

and revolutionary, and as divorced from the project’s original intent, as that

other DARPA project known as the Internet. This revolution has been dubbed

ubiquitous computing.

With such an emphasis on small size, these devices - or at least those at the

leading edge of development - are of necessity slow to process and communi-

cate data. The processing and memory limitations of these devices are reminis-
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Chapter 1. Ubiquitous Computing and Distributed Sensor Networks

cent of their large counterparts that were standard well over two decades ago.

This forces a new paradigm in processing methods, software development, and

even problem-solving approaches just to clear the high bar of what is expected

of computing platforms today.

The next section details how the vision of ubiquitous computing affects DSN

development and provides this development with guidelines for the future of

human/computer interactions.

1.1 The Third Age of Computing

For over a decade, the Next Big Thing in computing technology has been

something now dubbed ubiquitous computing. For many people the idea of a

nearly omnipresent computer is as distantly futuristic as a manned mission to

Jupiter.

The truth is that this ”third paradigm”1 has been a long time coming, and is

closer to realization than might be apparent at first.

But just what is a ubiquitous computer? Mark Weiser, considered the Fa-

ther of Ubiquitous Computing, calls it the transparent computer. ”The most

profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it,” [39]. Ubiq-

uitous computing means that the whole environment will spew pre-digested

information tailored to a user’s task at hand and be even more aware of the sur-

roundings than the user. This vision rejects the current paradigm of the desktop

metaphor as just a simile and in particular the demanding focal point of a mon-

1Weiser attributes this phrase to visionary and Smalltalk creator Alan Kay. It refers
to the progression toward greater intimacy of human/computer interactions first from
mainframe computers, then to personal computers, and now to ubiquitous computers.
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Chapter 1. Ubiquitous Computing and Distributed Sensor Networks

itor screen for all interactions (”who would ever use a desk whose surface area

is only 9 [inches] by 11 [inches]?” [39]). Ubiquitous computers have emerged

from the single box and recede into the background, merging with human com-

puting needs in a much more natural way. Rather than force humans to adapt to

the computer, the ubiquitous computer adapts to the needs of each individual

user.

All this may sound like fantasy, but it is not just the stillborn brainchild of

one person. Around the world many real, functional projects which are pre-

sented in conferences focus on the ubiquitous paradigm.

As computers emerge from their cases and meld into the woodwork, they

tend to shrink in size and become tetherless. Currently the ubiquitous computer

is most distinctly embodied in the DSN. While there are other interpretations of

the vision, DSNs are the most widespread and promising. Just what constitutes

a DSN is sometimes not so clear.

DSNs can be defined by an explication on the name:

• Distributed Firstly, DSNs are distributed - most obviously geographi-

cally. Ubiquity promises presence everywhere, so DSNs are spread out,

but not underfoot. This far-flung embedding usually requires individual

nodes to be long-lasting, low-power, and inexpensive. Distributed also

implies that the processing is not located in any one place, which can eas-

ily lead to the tolerance of a variety of faults.

• Sensing As a result of being distributed, DSNs are positioned to sample

a surrounding environment over a relatively wide area. Human/computer

interaction mediated by the surroundings (rooms, furniture, doors, etc.) is

a core tenet of ubiquity. Aside from DSNs, robotics is the only field that re-

quires real-world awareness to such a degree. Such contextual immersion

not only allows the computer to better interact with humans, but, more
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importantly, it vastly increases the quality and quantity of truly useful in-

formation an embedded computer can yield.

• Networked Sensor distribution without some sort of coordination is

pointless. Networked computing sensors can fuse and transform real-

world data to produce information that would be otherwise unattainable.

Networking unifies singular sensing nodes into a coherent whole.

A single node tends to be rather simple. Traditional remote sensors simply

send off a raw detection signal to be processed. The next step up, the smart sen-

sor, has onboard firmware which automates removal of nonlinearities and elec-

trical noise from the detection signal before transmitting it to a processing unit.

These compact smart sensors are usually enabled by Micro-Electro-Mechanical

Systems (MEMS) technology which allows reduced size and cost and can in-

crease accuracy and performance.

Smart Dust takes this progression one step further. The individual Smart

Dust node can find and communicate with neighboring sensor nodes to form

a DSN, and even process (not just pre-process) its own data. Begun by Pister

at UC Berkeley, the Smart Dust project aims for sensor nodes of just one cubic

millimeter; already, fully functional prototypes have shrunk to five cubic mil-

limeters. The project continues today in pursuit of its original goal.

Size will soon no longer dictate low functionality. As Moore’s Law continues

with no end in sight, the laptop of today is the handheld of tomorrow, and

today’s palmtop is tomorrow’s Smart Dust.

How is software developed for computers that can barely be seen? How are

networks that scale to hundreds of thousands of nodes developed? The Dis-

tributed Sensor Simulator is a software development tool designed specifically

for DSNs. It handles issues of sensor network development not addressed else-
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where.

This document discusses both DSS and the relatively fledgling field of DSNs

that the simulator embodies and explores. Chapter 2 summarizes the extensive

background of DSNs and issues prevalent in DSN development. This includes

issues in node topology, computation models, data routing, and software fault-

tolerance.

Chapter 3 presents the design architecture of DSS, while Chapter 4 expands

on certain aspects of the software implementation. Chapter 5 then demonstrates

the validity of the software.

Chapter 6 notes similar projects that had some influence on the design of

DSS, and Chapter 7 discusses where this project is going next.

Finally, Chapter 8 concludes with a discussion of behavioral visualization,

wide-area data dissemination, and how DSS is currently being put to use.

5



Chapter 2

Background

Before detailing the architecture and implementation of DSS, the context

from which it arises must be explained. This chapter samples some existing

DSN systems, examines some of the most important issues of developing a

DSN, and finally investigates application dependability and fault recovery. DSS

provides for simulated explorations of all of these aspects of DSNs.

2.1 Applied DSNs

Talking about ubiquity and technological paradigm shifts is somewhat un-

real, with an air of the purely fantastic. What is the state of DSNs right now and

how close are the promises of ubiquity? The following three working DSN sys-

tems exemplify different means of data collection, fusion, and dissemination as

discussed in later sections. These projects not only demonstrate the here-and-

now of this technology, but they also point out that DSNs, and by extension

ubiquitous computing, are not about size, they are about interaction.
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Chapter 2. Background

2.1.1 Habitat Data Collection on Great Duck Island

On a small island off the coast of Maine, the College of the Atlantic operates

a seabird habitat sanctuary. Great Duck Island is a favored location for Storm

Petrels to breed and nest in burrows. Although the CoA seeks to study the

incubation behavior and nesting choices of these birds, it has been observed

elsewhere that any disruption by human presence dramatically increases the

mortality rate of the unhatched. Entire colonies will even abandon a site if they

are repeatedly disturbed. The CoA, in cooperation with UC Berkeley, installed

a DSN of 32 nodes that reported light, temperature, pressure, and humidity for

over four months [29]. Sensors were placed near nesting burrows, as well as in

uninhabited areas, in order to help biological researchers determine the optimal

microclimate for breeding.

Using multihop routing, sensor data is funneled back to a collection sta-

tion where it is recorded, averaged, and displayed on the Internet. The project

can still be seen in declining operation at www.greatduckisland.net. Individual

nodes have multiple sensing devices, each of which is sampled at a relatively

slow rate. Power conservation is a high priority to minimize human interven-

tion in maintaining the DSN.

2.1.2 Structural Integrity Monitoring

Currently the typical method for determining the structural health of a

building, particularly after an earthquake, is through time-consuming, costly,

and imprecise visual inspection. Large expensive seismic accelerometers ex-

ist for detecting problems, but they are difficult to install and hence are used

sparsely. Steve Glaser of UC Berkeley’s Civil Engineering Department is ex-

ploring the use of small untethered detectors clustered around numerous key
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structural points to yield much more complete, and more fine-grained infor-

mation [10]. This allows local damage to be identified rapidly, thus increasing

safety.

In this system, the sensor nodes are interested in only two events: a) tremors

as detected by onboard accelerometers, and b) queries for data. The large ma-

jority of the lifetime of one of these nodes will be spent sleeping. Upon a seis-

mic disturbance, the accelerometer, which is always powered, wakes the node

which verifies and stores the data. The network can be queried at a later time

to collect this data and determine, offline, the severity of the shock wave overall

and estimate localized damage.

2.1.3 All-seeing Argus

While the previous two examples depended on small nodes, the Argus

project at Duke University would not appear to be a DSN at all on the basis

of size. Using an array of 64 cameras in a ring, Argus is a prototype telepres-

ence system [7]. The cameras are hidden behind a backdrop, defining a circular

space large enough to fit several people. The system yields either stereo im-

age pairs or a volumetric data set of objects in this space. What makes this a

DSN is the fact that each camera is coupled with its own high-speed processor.

These 64 processors act in concert as a Beowulf-class cluster. It has unlimited

power supply, relatively enormous bandwidth, and top-of-the-line processing.

Yet, the system requires that it be hidden ’in the walls’, and it has a one-to-

one correspondence of sensor-to-processing/communicating resource. Data is

shared across the cluster, and the system constructs its output of an image pair

or volume data to ship out across a network in real time. This behaves just like

a DSN, a very high-powered DSN, and a pointer to the future should Moore’s

Law continue to hold.

8



Chapter 2. Background

The common thread through these examples is that the knowledge gleaned

from these DSNs is greater than a mere summing of data. It allows the big

picture to be seen, even literally.

2.2 Development Guidelines

This section describes typical DSN development choices and their effect on

performance. For a particular DSN application, node topology, computation

strategies, and data routing may have a strong impact on that DSN’s function-

ality and robustness. Achieving big picture results is not necessarily a straight-

forward process, but DSS is flexible enough to enable any of the variety of ap-

proaches covered here through its simulation configuration.

2.2.1 Topologies and Node Deployment

Sensors are distributed in order to maximize their exposure to the phenom-

ena they seek to record. How they are distributed can have a great effect on their

functioning.

There are three generic types of DSNs: a) classical, which involves direct

sensor contact with a central processing station, b) multi-hop routing to a central

processor, and c) DSNs with in situ processing and no central station.

In a classical DSN, as shown in Figure 2.1, unembellished sensors are either

tethered or in direct contact with a central processor that compiles and interprets

the raw detection data. This type of DSN has obvious implications about the

range of coverage.

An untethered multi-hop DSN, such as the one in Figure 2.2, has a much

9



Chapter 2. Background

Central Processing Station

Figure 2.1: Simple Sensors in a Star Configuration

wider range, but is still very dependent on the central processing station and

the single point of failure it represents. In addition the sensor nodes are now

handling message routing as well as simple detection, and this implies greater

computational sophistication, a potential that may be largely untapped.

In situ DSNs are freed from the tyranny of a single processing station. Most

or all of the data processing is performed locally by the sensing nodes them-

selves. Although the data must be retrieved from the network (exfiltrated)

somehow, this can occur dynamically from any node by routing the results.

In DSNs with Collective Computation (DSN-CC, see Section 2.2.2), each node

holds the final global decision once it has been calculated, and so each node can

act as an exfiltration point.

10
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Central Processing Station

Figure 2.2: Smarter Sensors Slaved to a Compute Center

Node deployment can also affect computation capabilities and not solely by

network density. Howard et al. discuss a simple algorithm for mobile sensor

blanket coverage over a defined space using potential fields [19]. However, as

discussed near the end of Chapter 5, adequate sensor coverage may depend

on the phenomena being detected. Typically, however, detection algorithms

that are based on unstructured ad hoc node topologies are preferred. Qi et al.

point out that optimal sensor placement has been shown to be NP-complete for

arbitrary fields [35]. Ad hoc algorithms and methodologies are far more robust

and allow for nearly any deployment strategy. Even random scattering is valid

so long as RF connectivity constraints are honored.

2.2.2 Computation

Although DSNs could push their raw measurements to some database, as

with the Great Duck Island project, in light of the limitations of DSNs such a

choice appears to be wasteful. A different processing paradigm is called for in

the pursuit of optimal efficiency and by the combination of issues at play in
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DSNs: the data volume is much larger, the bandwidth is much lower, there is

very limited power, and both the environment and the network are unreliable.

Not only is there low bandwidth, but, due to the high power draw of transmis-

sion, communication must be reduced in order to prolong node lifetimes. Thus

it would be wiser to extract and condense some information from the raw data

at the individual nodes.

Data fusion is necessary to some degree in order to maximize network life-

span. Data fusion also implies an added value through multiple sensor readings

(achieving quality with quantity). Typically, this would be done in a database

approach anyway.

There are a number of approaches to data fusion: fusion of measurements,

of data features, or of decisions.

Measurement data fusion combines the raw data. This can be done through

coherent sensor data combination, for instance beamforming (a sonar detection

technique), or with non-coherent analyses like Bayesian decision-making. Often

such algorithms must accommodate scaling issues by first computing in local-

ized clusters, and then expanding outward to a global compute.

Feature level fusion extracts pertinent information from the local data be-

fore combining such reduced data sets. A study by González et al. found that

similar reductions combined in hierarchical patterns of computation sharing, as

opposed to parallel, lower the required bandwidth and processing capacity of a

DSN application [11]. This is similar to the local expansion to a global compute

suggested above.

To accomplish decision fusion, neighboring nodes share data and cooper-

atively reach a local decision which is then disseminated throughout the net-

work. A global decision is then reached using these local contributions. This
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approach is the focus of the DSN-CC project from Los Alamos National Labo-

ratory (LANL). Note that by passing only conclusions, the total communication

requirement is rather low.

One more in situ approach is based on mobile agents. In this strategy, the

data is stationary, but the state of the computation moves about the network.

Iyengar and Wu [20] hold that this Mobile Agent DSN (MADSN) approach has

a low bandwidth requirement, requires little network reliability, is easily exten-

sible, and is very scalable. Mobile agents also have the advantage of not dis-

carding any data, which may be crucial in certain applications. Note however

that the computation state must be small in order to satisfy the low bandwidth

promise, and hierarchical reduction throughout the network will still be neces-

sary to satisfy scaling.

Doubtless in-place computational methods are best for robust, timely re-

sults, while maintaining long node lifetimes. DSN-CC and MADSN appear to

be complementary approaches and are most likely to apply to the majority of

DSN goals.

2.2.3 Data Routing

DSN networking principles, particularly those that are self-organizing, are

the most researched sector of DSN properties to date. Popular deployment sce-

narios tend toward random scattering, and due to power limitations and node

vulnerability network reliability is potentially quite low. These ad hoc issues

require a communication network capable of repeated self-discovery. Network-

ing research has therefore adopted either light, transitory global structures or is

completely structureless. Because both collisions and idle listening waste pre-

cious energy, media access control also requires new approaches.
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Ad hoc

Ad hoc methods vary from table-driven to on-demand, finding an end-to-

end route more or less dynamically. Table-driven ad hoc routing performs a

primary, global network discovery to build routing tables for all nodes, then

maintains those tables as links are lost or newly discovered. On-demand rout-

ing builds and modifies each node’s global routing table only as needed: failed

routes are modified and retried. Obviously these approaches have opposing as-

sumptions about the frequency of routing between any two end points and the

frequency of failure of a route.

As an example, Ad Hoc On demand Distance Vector (AODV) is possibly

the most popular ad hoc protocol. AODV maintains a table of routes that is

corrected through back-propagation of route error messages. Unknown routes

are discovered as needed by flooding to some set radius of nodes. This radius

expands, eventually to the entire network, if the route continues not to be found.

Data driven

Data driven approaches include flooding, gossip, rumor, directed diffusion,

and min-energy subnet. Flooding and gossip provide examples of how this

approach is heedless of the global network since each node knows only of its

neighbors.

Flooding very simply rebroadcasts any received message. It is easy to see

that this protocol has problems with implosion (duplicate messages), and over-

lap (the same event is reported by several sensors). These are frequently solved

by some form of negotiation, but negotiation also increases overhead.

Haas et al. describe gossip routing as akin to flooding, but the broadcast to
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propagate the message only occurs with a probability of between 0.6 and 0.8 in

order to improve performance and reduce overall messages [13].

Both ad hoc and data driven approaches also include an alphabet soup of

flavors of their various protocols that optimize for shortest path, fault tolerance,

low maintenance, energy conservation, and so on.

This wide variety in computation, routing, and positioning strategies begs

the question: which is the best? It depends. A MADSN might be concerned with

end-to-end routing, while a DSN-CC will not be. Certain DSN applications may

be more sensitive to network robustness, energy conservation, etc., requiring

different variations in these approaches. Certain DSN infrastructures exist to

ease this burden by providing such choices as services.

2.3 DSN Operating Systems

DSN operating system (OS) issues also shed some light on DSN devel-

opment in general. In particular, the contest between general purpose versus

event-driven approaches seems to heavily favor the latter.

The Tiny Microthreading Operating System (TinyOS) is the premier DSN

OS and is event-driven. The claim is that this event-driven basis yields a sig-

nificant improvement in performance, a reduced memory requirement, and re-

duced power consumption. However it is not necessarily the basis on event

interaction that brings about these savings. The fact that TinyOS includes only

those software modules necessary to complete application tasks is the reason

behind its success.

In a comparison of TinyOS against eCOS, an embedded general-purpose OS,

Li et al. concluded that the significantly better efficiency of the former was due
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to a close match of basic blocks of system behavior with the application’s tasks

[26]. This is significant because TinyOS is actually not an operating system, but

a custom-programming infrastructure.

2.3.1 TinyOS

With the launch of the Smart Dust effort at UC Berkeley in 1999, it rapidly

became obvious that the software challenges of hyper-miniaturization would at

least equal those of hardware development. To ease the constraints of scant re-

sources as well as to buffer applications from ever-refining hardware platforms,

Hill et al. created TinyOS [17].

TinyOS is not a typical OS at all. It is a programming framework for em-

bedded systems and components that eases the creation of a set of application-

specific OS-like services.

TinyOS seeks to achieve a small software footprint, low power consump-

tion, efficient concurrency, and high software modularity. Therefore the system

is kept simple. The system image consists of a scheduler and a graph of com-

ponents. Upper level components issue commands to lower layers that in turn

issue events to which the upper layers respond. Tasks are posted to the sched-

uler by commands or events. Executing tasks can only be preempted by an

event. Tasks can only operate within the fixed-size memory frame. When the

scheduler queue empties and no events occur, the node enters a power-saving

state.
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Extensions to TinyOS

The TinyOS software distribution also includes some helpful extensions to the

basic services.

• TinyDB - a SQL-like query processing interface for data extraction from a

TinyOS DSN. It collects data, filters, and aggregates this data in-network,

then routes it to an exfiltration PC.

• TinySec - a link layer block cipher using a single symmetric key to solve

potential authentication problems in the network. It cannot prevent replay

or insider attacks.

• Maté - a virtual machine layered on top of TinyOS [24]. Maté allows viral

reprogramming of an entire DSN.

2.3.2 EYES OS

Not to be left out of the DSN arena, the European Union is funding a re-

search project developing collaborative sensor networks (eyes.eu.org). The En-

ergY Efficient Sensor networks (EYES) project is concerned with data services

to the end user as well as processing DSN detection data.

The EYES OS architecture consists of three layers: the application, the dis-

tributed system services, and the sensor network [6]. The distributed system in

turn is composed of a lookup service and an information service. The lookup

service handles sensor network configuration and application loading, while

the information service collects data together for delivery. Within each individ-

ual node is a local information component that allows access to sensory data

and a network component that provides protocol stacks.
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In practice EYES OS appears to be much like TinyOS in that it is a program-

ming infrastructure for DSNs. This new API approach to operating systems

appears to be a distinctive win in providing services for DSN nodes. This ap-

proach also suggests that algorithms for use in DSNs should avoid excessive

generality as well.

2.4 Fault-Tolerance and Dependability Testing

DSNs may expect nothing about the hospitality of their surroundings, and

as a consequence it must be assumed that nodes will fail, and often. Multiple

isolated failures, related regional failures, and even rolling blackouts can occur.

Designing for fault-tolerance also affects how DSNs compute results. Fis-

cher et al. long ago demonstrated the need for synchrony to achieve consensus

in the face of faults [8]. Due to potentially poor network reliability, it must be

assumed that synchrony will be poor as well. Thus fault-tolerant DSN compu-

tation cannot require a full consensus.

With an awareness of the failure models that apply in a particular domain,

DSN developers can construct fairly thorough tests for use in DSS and even

arrive at a confidence bound for a DSN’s dependability.

2.4.1 Failure Modes

Failure can occur in the hardware, in the software, in networking, in pro-

cessing, or in detecting. Regardless of their cause, including intrusion, many of

these failures exhibit similar symptoms - ultimately leading to losses in compu-

tation or data.
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Failures in distributed computing are typically modeled as omission, com-

mission, value, and timing failures. Failure by omission can occur in either the

process or the channel. Process omissions are typically fail-stop, which peer

nodes can detect, or crashes, which cannot be detected. Send omissions consist

of messages that the process has sent but has not placed on the channel. In a

receive omission, a node fails to retrieve a message available on the channel.

Errors of commission can likewise occur in the channel or in the process.

Send and receive commission faults indicate that data has been sent or received

which should not have been. A fault of commission in the process is a spurious

occurrence of improper output. A value fault is similar to a process commission

fault; it is output that is expected but is incorrect.

Timing faults may involve an individual node’s clock or process perfor-

mance, or the performance of the channel. Timing failures are relevant only

in synchronous systems, but as noted in a previous section, most DSNs cannot

be synchronous.

Byzantine faults are altogether arbitrary and are generally associated with

system intrusion.

Methods of tolerating these faults can be thought of in terms of how they

maintain the safety and liveness specifications of an application. Fault-tolerance

techniques fall under the major categories of masking, nonmasking, and fail-

safe tolerance. In fault masking, both safety and liveness are satisfied even as a

fault is occurring. With nonmasking tolerance, safety and liveness are true only

after a fault. Fail-safe indicates that only safety is satisfied after the fault.

The remainder of this chapter discusses techniques of masking faults for

achieving system dependability.
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2.4.2 Dependability Testing

Ideally, a DSN application is not just fault-tolerant but fully dependable.

Dependability includes program correctness and security, as well as fault - tol-

erance. Despite all the techniques to achieve dependability, however, there is

only one way to be sure of dependability: test the application. Hamlet proposes

that testing can be performed intelligently to ”squeeze” failure probability into

some low bound [14].

Fault-Tolerance Testing

DSS provides the means of this testing. Through DSS, the DSN developer

can purposefully encode any of the failure modes mentioned above. For in-

stance, fail-stop may be simulated by a non-responsive (sleeping) process. Send-

omission errors can be simulated with an otherwise correct process that fails to

broadcast a message it considers sent. Byzantine errors are the most difficult

simulated failures to craft. Their arbitrary nature requires a measure of creativ-

ity in order to thoroughly uncover weaknesses in the application.

Security Testing

Security vulnerabilities can also be caught with DSS. A simulated compro-

mised node can launch a variety of attacks on processes and on communication

channels. Denial of Service (DoS) threats alone provide a rich source of network

disruption. Wood and Stankovic detail a multitude of security threats and DoS

possibilities specifically for DSNs [40]. While there is value in securing routing

protocols against such threats, an application that can handle regional network

DoS failures, such as a black hole where a node advertises a zero cost route from
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itself to all other nodes, can also handle the same failure embodied as drained

batteries or even node losses from a flood or fire.

Ensuring Correctness

Correctness is, as always, extremely difficult and costly to ensure. Fur-

ther, code correctness is worthless if there is a fault in the design. While there

is a body of literature devoted to the efficacy of correctness testing, decades

of lessons learned from software engineering practices indicate that testing is

always incomplete. The best that can be done is to lower the bound on the

probable presence of faults [14].

Since software faults are inevitable, the only way to be certain that they will

not disrupt the system is to catch such errors as they occur. This is accomplished

through fault-tolerance techniques which happily handle many of the faults and

security issues mentioned above as well as hardware faults.

Software fault-tolerance techniques are a way of masking faults so that the

occurrence of an error is not outwardly visible. For real-time systems such as

DSNs, this is particularly difficult. DSNs can be classified as real-time because

in the general case the large volume of incoming sensor data will not allow DSN

applications to linger too long in processing any one data set.

Fault-tolerance techniques must allow the system to maintain availability,

reliability, safety, and security. This is achieved through error detection and on-

line recovery. Recovery schemes vary widely, but generally they may use single

or multiple, possibly diverse, hardware channels, and one or more, possibly

diverse, software modules processed either sequentially or concurrently. One

method even uses diverse but logically equivalent data sets. Some well-known

examples illustrate these principles.
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Recovery block (RB) detects errors with an acceptance test. If the acceptance

test detects a failure, the system returns to the cached checkpoint and recom-

putes with an alternate software module that is computationally equivalent yet

diverse from the original module. RB has no hardware replication, but both

code and time redundancy. This assumes the independence of defects in di-

verse software, which has been shown to be false; nonetheless the probability of

failure is significantly decreased by this method [18]. In addition the acceptance

test itself may be faulty.

N-version programming (NVP) uses hardware redundancy to run N diverse

modules concurrently. Each module’s output should be equivalent given the

same input; therefore a majority agreement ought to rule out faulty processes.

NVP suffers the same weakness as RB in its core assumption of fault indepen-

dence [18].

Pradhan and Vidya’s Roll-Forward Checkpointing Scheme (RFCS) uses a

single software module running concurrently on two processors [33]. If a check-

point does not match, a spare (third) processor determines which is the valid

checkpoint, and the valid processor’s current checkpoint replaces that of the

faulty processor. RFCS cannot detect coding faults without software diversity,

but variants exist that use different software modules.

In considering fault recovery, DSNs are a special case in two ways: a) DSN

nodes must handle incoming data as well as perform computations and b) al-

though hardware redundancy is available by local neighboring nodes sharing

data and processing capability, a ’hot spare’ is never a true spare processor since

it has its own sensing and processing responsibilities.

Despite these caveats, Xu and Randell present two related real-time recovery

schemes that may be adapted to DSNs [41]. Roll-Forward Recovery with Dy-

namic Replication Checks (RFR-RC) is a modification of RFCS that covers faults
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throughout the recovery process with a roll-forward action. RFR-RC avoids

rollback, and the associated re-computation, so long as faults do not occur at

two consecutive checkpoints (a common assumption), ensuring a timely re-

sponse. Roll-Forward Recovery with Behavior-Based Checks (RFR-BC) detects

faults with a variety of self-detection methods. When a fault has been identi-

fied, RFR-BC uses acceptance tests to determine the valid process in the pair. As

with RFCS, that valid process’s state is transferred to the other processor. RFR-

BC avoids the need for a spare processor, but may be unable to detect certain

faults and is dependent on a potentially faulty acceptance test.

DSS can easily include RFR-RC and RFR-BC. The key questions that must

be studied concern the amount of overhead inherent in these techniques and

whether the methods interfere with DSN node responsiveness to incoming data.

Studies of fault-tolerance for DSNs, either in the form of recovery techniques

or as some simpler method, do not appear in the literature. There is much work

to be done in this field.

As the next chapter demonstrates, DSS specifically enables the developer to

explore all these issues to find an optimal DSN for a specific situation.
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Design Approach

With the challenges of DSNs as discussed in the previous chapter, it is clear

that current software development tools are inadequate to deal with this new

paradigm. Designed primarily for the creation of serial desktop applications,

and occasionally for high-performance parallel applications, such tools utterly

miss the core live-data-handling issues of DSNs: detection, fusion, routing, and

interaction. Unlike common and familiar software products, DSNs are deeply

embedded in their surroundings and some may even respond to their environ-

ment through robotics.

DSS addresses this challenge. It simulates DSNs and the sensory channels

they monitor. Because of the embedded nature of DSNs, DSS focuses primarily

on the behavior of the network’s nodes.

Why simulate? Swain aptly notes: “[A]s the size and complexity of systems

increase, simulation is no longer a luxury but a necessity for proper analysis

to support good decisions” [37]. Simulations tend to be cheaper, easier, and

faster to assemble. Large-scale tests are just as easy and inexpensive as small

ones, whereas costs always scale with the size of live tests. Simulations are also

24



Chapter 3. Design Approach

reproducible and controlled, which are critical for analysis. On the down-side,

a synthetic environment has the potential to not adequately represent reality,

often in unexpected ways. As a result, this caveat must be monitored to discover

its degree of pertinence.

In this case, the DSS simulator is meant to be the second step in DSN ap-

plication development. Once the developer has created and serially debugged

a fledgling application from an algorithm, the application can be plugged into

DSS in order to explore the effects of variation in, for instance, node topologies

or data routing schemes. This process allows the problem instance to be well-

understood through testing before a developer addresses the idiosyncrasies of

hardware implementation.

DSNs are by nature very opaque to scrutiny. This is in part due to their

characteristic of being unobtrusive and embedded in the environment, and in

part because they are geographically distributed. Therefore visualization of the

DSN and its surroundings is important to help establish the context of the DSN

for the programmer.

As discussed in the previous chapter, what constitutes a DSN and the range

of duties they perform are very diverse. DSS handles this diversity by maintain-

ing high flexibility. This is a guiding principle in the design of DSS, as examined

below.

3.1 DSS System Architecture

To keep DSS simulation as general and flexible as possible, the DSS archi-

tecture defines node objects, their radios, sensors and actuators, and even the

environmental event models at run-time from a collection of configuration files.
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In addition to giving the developer full control over every aspect of a simula-

tion, this framework allows for the easy substitution of other, potentially radi-

cally different, distributed systems. Further, the modularity of the user interface

also allows easy modification of visualization capabilities.

DSS decomposes a generic DSN into basic components: the nodes, a com-

munication channel, and one or more sensory channels. The nodes are further

divided into radio (an interface to the communication channel), sensors (inter-

facing sensory channels), and an algorithm to run.

machine A

machine Z machine B

administrator

viewer

viewer

SimCore

Wireless Channel Model

node

node

node

algorithm

Figure 3.1: DSS Architecture: Overall

3.1.1 User Interface

Figure 3.1 shows only one administrative user. This user configures and

starts a DSS simulation. Others may only view the simulation. Additionally,

as the figure indicates, the user interface is independent of the simulation, to a

large extent decoupled from the intense activity in the core of the simulation.
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This decoupling proves to be an important design point for parallelism (see

Chapter 4).

3.1.2 SimCore

The blue triangle in Figure 3.1 represents the SimCore, which is the global

coordinator for the simulator. This is where the embedded environment is sim-

ulated, the configuration stored and shared out, and global timing propagated.

Conceptually the SimCore represents the environment and all the computa-

tion that in the real world takes place naturally as the result of physical interac-

tions. Although a physical DSN is interconnected electronically, it is also tied as

a whole to its physical surroundings. The architecture of DSS echoes this in that

nodes are connected to each other through the Wireless Channel Model (WCM)

and are all bound to the SimCore and particularly the environmental simulation

(the EnviroSim).

EnviroSim

To produce dynamic detection results across a variety of source types and

behaviors, DSS allows the user to specify the propagation behavior of a source

and how it is detected by the sensor node. This specification defines the physics

that affect phenomena detection calculations.

Many sources are discrete, such as a gunshot, in that a signal is present only

for a brief period. These discrete source events may recur, but they are still

treated as separate events. Other sources, however, are continuous, such as

gamma radiation, and are of long duration. To model this, DSS ’pushes’ tran-

sient detections out to the nodes, but allows the nodes to ’pull’ in detection data
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for continuous sources by querying.

Figure 3.2: EnviroSim Event Queue Interaction

Figure 3.2 demonstrates how DSS orders this pushing and pulling of data for

a globally consistent world view of events. Upon initialization, a preconfigured

event that occurs at t = 3 has its corresponding detection events for nodes A and

B calculated and placed on the event queue. The same takes place for the event

with t = 8. During simulation, the event queue gets to time 3, at which point the

detection for node A dequeues and a notice is sent to node A. Meanwhile node

Z queries for a detection which is set at t = 6; the data for this continuous source

is calculated and inserted into the event queue.

When considering node intermessaging as events, it becomes apparent that

the ordering of radio messages with source detections could also be important.

Timestamping packets solves this potential inconsistency since detection data

are already timestamped. The node will be presented with all incoming data in

proper global order. How the node deals with that data is up to the application

(the ordering may be moot).
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Configuration

The internal representation of a DSN in DSS is purposefully abstract. By the

grace of this abstraction, the user can specify a wide variety of node topologies,

sensor capabilities, radio characteristics, and event sources. All this information

is acquired at runtime, dynamically loaded into the simulation and embodied

as node processes.

3.1.3 Wireless Channel

To maintain flexibility and most closely echo physical DSNs, DSS only sim-

ulates the wireless channel. Further processing, like protocol stacks, must be

handled by the nodes themselves - just as with a real DSN. Ideally the WCM

should simulate not just radio frequency connectivity and message broadcast-

ing, but also realistic error rates and transmission collisions. Additionally, dif-

ferences in radio frequency also alter the graph of node connectivity. This graph

is passed down from the SimCore, where it is originally calculated. Figure 3.3

enlarges the area in Figure 3.1 that shows the relationship of the WCM to the

nodes.

3.1.4 Algorithm Plug-in

The DSS is for naught without a mechanism to allow programmers to in-

sert code in the nodes. Certain interfaces, namely communication and detec-

tion, must be owned by DSS for interaction with the simulation, but beyond

this application programming interface (API) the developer can create arbitrary

functionality. By carefully tying the application’s detection handling to source

propagation specifications, arbitrary detection behavior can be modeled as well.
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to peer WCMs

Wireless Channel Model

node

node

node
algorithm

Figure 3.3: DSS Architecture: Remote Machine

This design maximizes the possibility of porting simulation code directly to

hardware unchanged.

Distributed Virtually, Distributed Literally

Why the green ring of replicated WCMs in Figure 3.1? With the amount of

processing complexity to be serviced, scaling into the thousands of nodes cer-

tainly requires special handling. Therefore, DSS allows clustered simulation in

parallel. Each circle on this ring represents a subset of DSN nodes interfaced

with a WCM. Each WCM communicates only with other peer WCM whose

member nodes are directly connected to the local node subset. Cluster distribu-

tion, given n WCMs (and processors), n-partitions the DSN connectivity graph

such that connections between partitions are minimized. This means that the

most highly connected virtual nodes are on a processor together, without im-
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balancing the load across all processors. Since typical DSNs are far-flung and

sparse, the likelihood of being burdened with a fully connected graph of WCM

interactions is low.

By ensuring flexible incorporation of different topologies, sensors, and ap-

plications, as well as allowing for a heavy computational load, this design ar-

chitecture simplifies the implementation decisions covered in the next chapter.
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Implementation

Previous chapters discussed the variety of ways an arbitrary DSN might

deal with its situation and data. This chapter will examine how DSS synthesizes

all these issues into a single, fully configurable, scalable, and potentially real-

time simulation of a DSN embedding.

As Heidemann et al., creators of nam - the ns-2 visualizer, point out [16], the

key to accurate simulation is a matter of knowing and/or discovering which de-

tails to give greatest credence. Specifically, ”[w]hen exploring a new area where

many issues are unclear, the need to quickly explore a variety of alternatives can

be more important than a detailed result for a specific scenario” [16]. They go

on to dub this approach as ’nimble’ simulation. This principle of agility was the

primary consideration in the implementation of DSS, and it allows DSS simula-

tions to embody all the theoretical DSN issues of previous chapters in various

combinations.

DSS itself is a careful balance of generalization and specificity, as well as

a prime example of agile simulation. Note the extreme configurability of DSS

simulations and the allowances for varying detail in the next section.
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4.1 Realizing the System Architecture

The design architecture presented in Chapter 3 outlined several main ob-

jects. This section will examine some select details of the most important of

these. Note from Figure 4.1 how the implementation simply fills in some miss-

ing details from the design shown in Figure 3.1.

GUI

Priority Queue

SimCore

interactive event

Configuration

output file

xml file

xml file

xml file

script file(s)

event display

send

recv

app data

debug

EnviroSim

failure event

source event

FailSim

calculateDetection()

... to WCM(s)

failuresconfiguration source events

Network

Groups

Nodes

DSS

Figure 4.1: Simulator Implementation Objects

All the objects contained in the blue DSS bubble in this figure are imple-

mented in Java. The GUI (Graphical User Interface) object echoes the Network
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object and all it contains because the GUI is in fact detached from the SimCore.

This is more obvious in Figure 3.1. Figure 4.1 demonstrates that these objects

are exactly alike. In fact, in an earlier version of DSS, the Network was a shared

object. Although the replication seems like extra work, it is in place to enable

remote viewing with a low communication overhead.

The green pipe here leads to one or more WCMs and is established when

these C++ executables are spawned. The WCMs in turn are configured, and

spawn and configure node executables which run custom applications. All

these are interconnected as the design in Chapter 3 dictates.

4.1.1 The User Interface

The interface of DSS is best described in terms of what data the user puts

in, sees during a simulation, and eventually gets back out. This overview will

introduce many of the components covered in later sections.

Input

Topology This includes the position of each node and specifics such as pro-

cessing power, radio specification, sensory capabilities, and what applica-

tion it runs. Nodes that are identical in all but position are configured in

groups for the sake of brevity.

Failures Singular or repeated failures are optionally defined, as well as the

nature of the failure. Failure simulation consists of a fork() and exec()

over to a selected executable.

Sources Includes the when and where, and the type and strength of an envi-

ronmental phenomenon.
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Phenomena Physics This corresponds with the source types. These scripts

dynamically determine just what is detected by a given node and when.

The script is given the source’s coordinates, the target node’s coordinates,

the time of the event at the source, and an argument string. Primary in the

data string that is returned is the time of detection at that node.

Application The executable to be run in the nodes as defined by the applica-

tion programming interface (see below).

Display

Node communication The contents of each packet, a brief graphic represen-

tation of the transmission range as a sphere, and line indicating connectiv-

ity are displayed in various panels.

Source events Sources are indicated as brief points for discrete sources or as

connected graphs for moving continuous sources.

Debugging messages As defined by the application developer, and revealed

through debugging options, this text appears in its own panel.

Simulation control Start and stop the simulation and display elapsed simu-

lation time.

User-defined messages Any relevant text the application developer chooses

can also be displayed.

Output

Simulation record For replay purposes, certain aspects of the simulation are

saved to a file. A replay does not invoke node processing or event queuing

and thus runs in real time.

35



Chapter 4. Implementation

User-defined output The application developer may also specify certain in-

formation to be saved separately. This is particularly useful for offline

analysis.

Figure 4.2: DSS Basic Screen

Figure 4.2 shows the basic screen of DSS. Starting clockwise it shows: DSN

visualization including node topology, transmissions, connections, and moving

sources, the debugging output, the communications packets, the source event

queue, and finally system messages and user output.
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4.1.2 The Event Priority Queue

Timing is the most crucial detail for DSS. This is not for the sake of real-time

viewing, which is most easily achieved by a replay of a simulation. Timing is

important because sensors typically care most about when an event occurred,

and it is vital that the system have coherent global event timing. As a result,

the core of the simulator is a Priority Queue Abstract Data Type (ADT). Events

are queued with resolution down to the millisecond, as the result of either a dis-

crete source event occurring (such as a single sound) or a node querying for the

detection of a continuous source (such as ambient temperature). Discrete events

are precomputed for their propagation to each individual node; however detec-

tion queries must be handled very rapidly to avoid introducing false latencies.

The design architecture requires that DSS have no control over the code that cal-

culates event propagation, although the priority queue should serve out query

data as instantly as possible if that is appropriate. The priority queue imple-

mentation used in DSS is the Skip List [34], and it is both efficient and relatively

simple to code. Being a list implementation, insertion to the front of the list is

always only one step, as is delete-min. Thus if event data must go out immedi-

ately, it does so; it is added to the queue otherwise - all without any abnormal

procedures.

4.1.3 The Scripted EnviroSim

If the event queue is the keystone of DSS, then detection simulation is

the cornerstone. Networking simulation has already been done elsewhere and

while the simulator gives lip-service to wireless, DSS is really all about dis-

tributed detection. This requires simulating the real world in which the nodes

exist. Fortunately, these nodes usually use no more than a few sensory chan-
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nels. The data reported by a real detector can be as diverse as the vendors that

produce the detectors. Therefore, it is the duty of the user to specify just what

data is fed to the node as well as the propagation physics of that phenomenon

channel. For example, consider the physics associated with an acoustic detec-

tor in the air versus one underwater versus one in an air-filled bag underwater.

This allows the user to make decisions about details that may or may not impact

the performance of a DSN.

This implementation uses scripts written in normal Java code, which are

then parsed by the DynamicJava engine by Dyade (koala.ilog.fr/koala/djava).

The timing and location of each event is used in calculating the time of detection

at each node position within range of a particular phenomenon. This detection

data is transferred to the WCM, which then interrupts the target node with a

signal and transfers that data onward. Appendix 3 contains a working physics

script for basic acoustic detection.

4.1.4 Configuration with XML

Another design point from Chapter 3 involves maximum configurability

for node composition, their topologies, event sources, and node failures. The

DSS configuration uses the eXtensible Markup Language (XML) to define all

four. Why XML? First, implementation was easy. As of Version 1.4, the Java

core includes the capability of parsing XML files directly into objects. This gives

object persistence that would be otherwise painful and bug-prone to implement.

But the use of XML also means that, thanks to its structure, it can be constructed

and manipulated in an automated way. This greatly eases the creation of nu-

merous experimental topologies, source configurations, and failure modes for

development and research. Further, these XML configurations can be imported

from and exported to much more readable forms via eXtensible Stylesheet Lan-
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guage (XSL) transformations, which are part of the DSS distribution. This trans-

formation functionality is present thanks to the Xalan module from the Apache

Software Foundation (apache.org).

4.1.5 FailSim

Failures are rather simple to simulate. A replacement application is pre-

specified in configuration. Fail-stop replaces the working application with one

that sleeps until killed. Arbitrary Byzantine failures can be simulated simply

by crafting a disastrously similar replacement application. The FailSim module

locates the appropriate node process, kills it and spawns the configured replace-

ment which take the place of the original process in the network.

4.1.6 The Wireless Channel Model

The WCM primarily serves as a router for node messages. It is aware of

the radio frequency (RF) connectivity, as determined by node location and indi-

vidual radio ranges, and propagates transmitted packets appropriately. It routes

data to nodes on the local host via pipes and ships to remote nodes using sockets

to its peer WCMs on other machines. Therefore in cluster simulation, each local

WCM has global awareness. The WCM uses select() over its node pipes, its

peer sockets, and the pipe to the SimCore for the all-important sake of respon-

siveness to any activity.
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4.2 The Application Programming Interface

The nodes are an inherent and inseparable part of the simulator as a whole,

yet the DSN developer must be allowed to run any arbitrary program on these

virtual nodes. To accomplish this the simulator has a library to which all node

executables must link. This library takes care of software objects such as the

radio, power source, and a timing link with the simulated environment. The

DSN developer simply writes a C++ algorithm object (Algorithm.cpp) that ei-

ther is self-contained or interfaces with existing code. Differing applications, all

with the same executable name, are kept separate by the directory hierarchy.

The API is rather simple. Communication through the virtual wireless chan-

nel takes place by calling receiv(...) and send(...) in the Radio object.

Calling detectSource(...) when a blocking radio receive is interrupted, or

as otherwise appropriate, retrieves any available sensor data. All this function-

ality goes in the nodeProcessing() method of the Algorithm object. For a

more in-depth treatment of the API and further instruction on running DSS, see

Appendix 2.

4.3 Features

Although a major design emphasis, network behavior visualization is not

critical to simulator performance. In fact, the simulator is perfectly capable of

running without the graphical interface. Nonetheless the user can observe net-

working dynamics, node and source locations, and detection timing graphically.

Packet contents, debugging, and other text all scroll by on secondary panels.

There are several debugging options. The most important from the user’s

point of view is node debugging. However, DSS internal functions can also
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be tracked by displaying multiple layers of operational messages for the GUI,

SimCore, EnviroSim, Configuration, and WCM objects. Debugging switches are

toggled on by command line options.

Large networks and/or high source activity in DSS push processing require-

ments beyond that which a single processor can handle. Therefore the DSS im-

plementation is distributable over a computational cluster for simulation in par-

allel. Currently untested, this feature should allow near real-time viewing for

complex DSNs on the first run.

Theoretically the simulator is scalable to 63,000 DSN nodes. This has not

been tested because such a large network requires cluster computing, which is

also untested.

Frequently, cluster head nodes are specialized and not convenient for di-

rectly viewing a simulation; hence DSS is remotely viewable. This means that

the user interface is separated from the simulator and requires only an IP (inter-

net protocol) address or hostname.

Despite the ease of using XML, creating a complex DSN topology can be

slow and error prone. Therefore, DSS also includes interactive DSN configura-

tion, which can then be saved as a correct XML file. Nodes and sources can be

positioned and configured graphically.

How does this implementation address the issues of DSNs? Primarily by

maintaining flexibility. Any three-dimensional node topology can be loaded in

the configuration. Any data processing scheme can be adopted in the applica-

tion. Any data routing approach can be built on top of the simulated wireless

channel. Any node failure or combination of failures can be simulated. Any

source phenomena can be detected - assuming its propagation is understood.

With some additional work, an operating system such as TinyOS can be in-
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cluded.

The modularity of the GUI ensures that the behavioral visualization can be

extended or replaced. In fact, the nearly-complete 3D module is a single Java

class of reasonable size. With this tremendous flexibility, a single DSN applica-

tion can be rapidly stress-tested, scale-tested, sensitivity-tested, and efficiency-

tested.

This proof-of-concept implementation is naturally immature and does not

provide all planned functionality. It in fact assumes a secure, stable, homoge-

neous network of compute nodes to run on. However, lessons learned from

distributed infrastructures such as PVM [9] and CUMULVS [21] indicate the

importance of fault-tolerance and security internal to the simulator and are in-

tended for a future release. Chapter 7 describes more future work in store for

DSS.

Discovery of which details are relevant to a particular simulation has yet

to be addressed. Heidemann et al. reveal that this is done, just as expected,

through validation [16]. The next chapter will provide a preliminary validation

of DSS.
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Validation Using Experimental

Results

Twenty years ago, Robert Sargent, an authority on simulation modeling,

presented a tutorial [36] that still serves as a foundation for simulation valida-

tion today. Drawing on 30 contemporary papers, his work represents a best-

practices consensus on validation methods for simulations. According to Sar-

gent’s survey, to verify and validate DSS it is necessary to examine conceptual

model validity, verify the computerized model, and establish operational valid-

ity. The conceptual model is the design architecture of a simulator. The com-

puterized model involves the programming behind the final executable. These

two must match up, which may not always be the case. Finally, operational

validity is a matter of ensuring that the output is correct for a given input, and

that the operation of the simulator is reasonably equivalent to the real system it

simulates. These three areas must be validated conjunctively.

Sargent defines ‘Face Validity’ as determining ”whether the model and/or

its behavior is reasonable” [36]. Chapter 3, demonstrates, point for point, how
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the design of DSS matched crucial interactions within a general DSN system.

This suggests a face validity of the conceptual model of DSS.

The computerized model, by virtue of the use of object-oriented program-

ming, closely follows the design of the conceptual model. As the examples in

Chapter 4 make clear, each noun in the design is an object, each verb a method.

Hence the validity of the implementation is dependent on the validity of the

design. Verification of code correctness is another matter. Sargent contends that

extensive testing is the means of verification; yet, the collective experience of

developer communities shows that user testing is the most complete means of

testing. This requires a user base which DSS does not yet have.

This leaves only operational validity to be demonstrated, which will help

reinforce the validity of the conceptual model. Sargent appears to suggest the

near self-sufficiency of output behavior testing:

The computerized model is used in operational validity and thus any

deficiencies found can be due to an inadequate conceptual model, an

improperly programmed or implemented conceptual model on the

computer (e.g., due to programming errors or insufficient numerical

accuracy), or due to invalid data. [36]

So long as all goes well with an operational comparison of the simulator

to a live system, validation is accomplished. The remainder of this chapter will

cover the output of a live experimental DSN, the DSS replication of those results,

and the differences between the two.
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5.1 The Empirical Experiment

Due to the Cartesian nature of DSN data, this section compares experimen-

tal (real) data with simulation data graphically. A comparison of these Cartesian

points should establish the operational, and hence overall, validity of DSS. This

real data comes from an acoustic Time Difference of Arrival (TDOA) experiment

at LANL performed in the summer of 2002 by the DSN-CC project [5] .

The LANL TDOA experiment sought to demonstrate the effectiveness of the

DSN-CC approach (see Section 2.2.2), test prototype nodes, and benchmark de-

tection performance across a variety of topologies. To this end custom acoustic

sensing nodes with processing power and RF communications were built for a

live field test. This field test was conducted at the Protection Technology-Los

Alamos Live Fire Range, which is used for weapons training for the LANL se-

curity force.

The nodes’ acoustic sensors were to detect gunshots on the firing range.

Node and shooter positions were surveyed from a known exact latitude and

longitude about seven kilometers away. The nodes exchange detection data -

simply the time at which an acoustic event crosses a particular threshold - until

four data points are collected. Then, per the TDOA algorithm (see Appendix 1),

from these four measurements a conclusion about the time and location of the

event is calculated by hyperbolic triangulation.

The TDOA experiment involved a number of radically different detection

topologies used on different days, from which four of the most complete data

sets were chosen against which to validate DSS. The results from the day that the

DSN-CC team chose to highlight in its report are shown first. The reason why

the team chose to highlight this particular data will be obvious upon viewing

the results of the remaining three days which follow.
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Figure 5.1: TDOA Locating Four Shooters (A, B, C, D)

5.1.1 August 13

The original experiment adjusted the GPS output into the coordinate sys-

tem of the survey measurements. Thus the coordinates of node 1, for example,

Source Coordinates
Ax Ay Bx By Cx Cy Dx Dy

Surveyed: 32.66 24.24 28.72 23.72 25.07 22.85 24.4 43.2

Calculated: 33 25 28 24 23 22 30 40
31 25 28 23 24 23 32 41
32 25 29 24 23 23

25 23

Table 5.1: TDOA Experimental Results: August 13
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were −6944.4 : −855.9, while its GPS-derived value was −6991 : −855. For the

purposes of verification of DSS, these values were normalized relative to an ori-

gin at −6992 : −875, which eases both comprehension of the local coordinate

system and entry into the simulator.

There is no scaling in the transference to simulation, so the distances of the

original system are preserved. Figure 5.1 plots the various coordinates of in-

terest from Tables 5.1 and 5.2. In examining Figure 5.1, note that the TDOA

experiment was subjected to real-world noise in the detection channel; hence

there are differing conclusions for different events from the exact same location.

Concerning source D, the DSN-CC team found it ”impossible to determine

Figure 5.2: TDOA Using Sub-Optimal Topologies: July 11
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whether the increased error in location was due to an offset or to increased scat-

ter” [5]. This issue was in such doubt that the team planned for the addition of

temperature detection to help establish a more realistic acoustic velocity (it was

artificially set at 330 m/s).

As will be demonstrated later, DSS provides some evidence that for this

source, this was in fact a very specific offset and that the contribution of any

speed-of-sound inaccuracies is insignificant in comparison.

Figure 5.3: TDOA Using Sub-Optimal Topologies: August 14
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5.1.2 July 11, August 14, and August 28

Like the August 13 data, these coordinates too were normalized to rela-

tively close origins. Figures 5.2, 5.3, and 5.4 plot the data from these days.

Note that because there are more than four nodes here, it is possible for the

network as a whole to produce more than one conclusion for the same acoustic

event. Each node collects only three additional data points from the network.

Thus where the nodes of the first experiment used all available measurements,

these nodes arbitrarily discard one.

Notice that the TDOA algorithm also calculates the time that the event orig-

Figure 5.4: TDOA Using Sub-Optimal Topologies: August 28

49



Chapter 5. Validation Using Experimental Results

inated as well as its location. Unfortunately, the TDOA field test was unable

to collect actual event timings, and so there is nothing with which to compare.

DSS by contrast triggers events with high accuracy at a predetermined time, so

a comparison with the original event is possible here. The calculative error is

consistently within −50 milliseconds. Without experimental data, it is exceed-

ingly difficult to tell how much of this error is due to the algorithm and how

much is due to the simulation. However, if anything, DSS should contribute a

positive latency error, not a negative error.

5.2 The Virtual Experiment

The node application for the simulator uses several of the original files used

to create the field-experiment node, with minimal changes. The data processing

is, aside from hardware differences, exactly the same. The simulation is not

subjected to the environmental noise of the original experiment, so every event

from the same position yields an identical conclusion data point.

The simulation results which are based on the August 13 data deviated from

those of the experiment by at most two meters - except for source C, where the

distance of the simulation result from the actual location (2.25 m) is equal to that

of the worst experimental distance (2.24 m), but in the opposite direction.

Despite this and the lack of noise noted above, the simulation results are

remarkably similar to those of the experiment.

Eliminating the GPS positioning errors by reporting actual positions in the

simulator produces some expected improvement, particularly at source D, but

source B exhibits a doubling of the initial error (Figure 5.5). Clearly, there are
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Figure 5.5: Error Distances (August 13)

acoustic complexities here, though not resolved in the original work, that are

reproduced in the simulator - despite its simplified environmental model.

The graphs of error distances for the data from the remaining days (Figure

5.6) demonstrate a wide variety of behavior. Does this invalidate the simulator?

Not after examining the degree of validity of the original data.

The following paragraphs address the acoustic and computational complex-

ities that lead to this divergence among the simulated, the experimental, and

the real.

Source Coordinates
Ax Ay Bx By Cx Cy Dx Dy

31 25 28 23 24 23 32 41

Table 5.2: TDOA Simulation Results: August 13
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(a) July 11 (b) August 28

(c) August 14

Figure 5.6: Error Distances
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Despite the utterly inconsistent divergence of the simulator’s performance

from that of the experimental network, there is still some meaning to be found in

this data. First, the simulator lacks any noise or echo effects. In the experiment,

the complexity that such effects would produce was eliminated by blocking out

most of the acoustic detection [5]. This results in nodes capturing measurements

that were not necessarily of primary events, whereas the simulator always cap-

tured the primary (and only) event. In addition, it turns out that this variety

of results is also due to inadequate detector topologies, and that the August 13

topology is the most reasonable. Thus there are otherwise inexplicable results

like that of source C on August 28, which were obviously not due to a constant-

factor GPS error.

August 13 is a good day with which to compare for two reasons. Firstly,

there are only four nodes present and hence all measurements made are used

to form a conclusion. With the presence of five or more nodes, measurements

are discarded arbitrarily. For an optimal topology this is not an issue as any four

measurements would give an adequate result, but the simulator simply cannot

reproduce the results of a poorly arranged network because it cannot reproduce

that (moderately) arbitrary choice. Secondly, the topology is relatively appropri-

ate, and the GPS positioning only reinforces this topology. An optimal topology

for this simplified TDOA method would be formed by two symmetric but dis-

joint linear arrays at right angles. In fact any simple wavefront technique, such

as unfiltered TDOA or beamforming, cannot handle significant deviation in de-

tector positioning from exact linearity [4]. Further, a single linear detector array

provides bearing but not range. Using two arrays cures this inaccuracy. How-

ever, forming an ideal topology on the firing range was a challenge the DSN-CC

team was helpless to address since node placement was too severely restricted.

While nonlinear acoustic sensor arrays are possible, and even common in the
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literature, use of time difference data requires further error correction, such as

Constrained Least Squares (CLS) which then yields the well-known and much

more satisfactory TDOA-CLS algorithm [12].

The crucial role of topology is easily shown by running the shooter data

from each of the four days through simulation with a six-node topology that

follows the x and y axes, with each node spaced 20 meters from its neighbor.

The maximum error distance from the actual shooter position in this case was

four meters, with an average of under two meters for all days’ data. Addition-

ally, Torney also obtained similar results using the same raw data sets (with

the original topologies) passed through a CLS filter [23]. Unfortunately for the

DSN-CC team, the TDOA experiment was intended to demonstrate an ad hoc

solution; yet the team had an algorithm that did not quite match this goal.

Thus the inability of DSS to produce a perfect reproduction of the results of

a real DSN in this case is not a weakness. On the contrary, DSS demonstrates

both the significance of the GPS approximation and the lack of robustness in

the underlying algorithm - and these are visible even without the experimental

data as a comparison. This is precisely what DSS was designed to do and really

highlights some of the utility of DSS in uncovering issues of prime importance

for both hardware and software development for a specific DSN situation.

Nonetheless, it is obvious that further operational validation using more

controlled experiments is needed for DSS.
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Related Work

While there are volumes of work being done on DSNs, including a few

simulators, none of it fills quite the same niche as DSS. Most other work tends

toward network simulation - which has already been well accomplished by the

ns-2 simulator and its wireless extensions. As such, four DSN simulators did

serve as inspiration and guidance in designing DSS. This chapter will focus

mainly on their divergence from and influence on this project’s approach.

6.1 TOSSIM

The TinyOS SIMulator (TOSSIM), earlier known as Nido, simply alters the

hardware abstraction layer of TinyOS so that DSN applications can be compiled

for and run on a PC. ”TOSSIM translates hardware interrupts into discrete sim-

ulator events,” [25]. TOSSIM, written by Phil Levis of UC Berkeley, is a regular

part of the TinyOS distribution.

TOSSIM only allows one application on a virtual DSN of arbitrary scale

(thousands of nodes). Like many parallel programs, this application can alter its
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behavior by branching as determined by the virtual node’s identifier. Network-

ing involves a connected-edge list with bit-error probabilities for each. TinyOS

networking stacks handle the rest of the communications details. TOSSIM per-

formance has been tested and found to be ”real-time” for ”thousands” of nodes;

Levis does not quantify this analysis.

TOSSIM does include network visualization through the TinyViz plug-in,

but that does not mean that there is any option for node localization data any-

where in this simulator. At least in TinyOS release 1.0, TOSSIM does not inher-

ently include support for any detection simulation. This was in direct conflict

with the goals of DSS. Using TOSSIM alone limits the user to exploring only

TinyOS. While this is useful, it is too restrictive. TinyOS integration is prefer-

able as a feature, not a design dependency.

6.2 SWAN

The Simulator for Wireless Ad hoc Networks (SWAN), in its TinyOS Scal-

able Simulation Framework (TOSSF) incarnation , also simulates the operation

of TinyOS applications [28], [32]. The principal investigators on this project are

L. Perrone and D. Nichol of the Dartmouth College Institute of Security Tech-

nology Studies.

SWAN, building on the Dartmouth Scalable Simulation Framework (DSSF),

models the RF channel, environmental channels, mobility, terrain, and sensor

nodes of a DSN. The terrain governs radio and environmental source propaga-

tion and mobile node movement. This model can be two- or three-dimensional,

and may potentially allow arbitrary complexity. When [32] was written, the en-

vironment model of SWAN consisted of only a gas plume diffusion. Oddly it

is ”not possible to mix nodes with different mobility models in the same sim-
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ulation” [32], which must be a strange implementation. Perrone et al. do not

give any details that might explain this. The RF propagation model allows the

user to choose among several levels of detail available. The node model is very

modular, and similar to DSS it allows easy swapping-in of application code -

which is what allowed Perrone et al. to insert TinyOS into their infrastructure

relatively well.

SWAN was designed to provide massive scalability to tens of thousands of

nodes. There is a great deal of layered complexity in these simulation models

in order to provide a vast amount of flexibility, and as such a SWAN simulation

of 10,000 sensors over a 100 km2 area run for 1000 simulation-seconds requires

10 hours to complete on five processors [28]. SWAN heavily influenced the

wireless channel and algorithm plug-in aspects of the DSS design. DSS however

seeks to shed some of the complexity of SWAN, as well as increase the ability for

distributed simulation computation, therefore achieving more timely results.

6.3 SensorSim

From UCLA, Park et al. composed a framework specifically for DSN sim-

ulation [30], [31]. The conceptual model of SensorSim is rather simple: every-

thing is either a node or a channel. ”Target” nodes (sources) ’transmit’ across

a sensor channel. This channel governs environmental propagation to sensor

nodes which transmit traffic across the wireless channel. The wireless channel

likewise controls RF propagation among sensors and to a user node. Sensor-

Sim also models hardware and even, rather accurately, battery use within the

sensor node. This simulator was used primarily to demonstrate the superior-

ity of time domain multiple access networking coupled with power cycling in

conserving power. Such a thorough power model is lacking in DSS; its power
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supply handling is rudimentary (see Appendix 2, Section 4.1).

DSS is similar to SensorSim in how it handles point sources. While SWAN

is adept with widespread continuous sources, SensorSim appears, in turn, to

be limited to discrete sources by design. DSS attempts to deal with both - al-

though plume dispersion is an inherently complex issue. Beyond this, however,

SensorSim was not an influence on DSS since the project has been discontinued

and the software is no longer available. This project may have been dropped in

favor of the recent networking-only GloMoSim produced by the same principal

investigators.

6.4 SensorSimII

From Georgia Tech, and unrelated to the UCLA project, Craig Ulmer cre-

ated an exploration of node clustering techniques, particularly for NASA appli-

cations, embodied in SensorSimII [38].

This work provides no obviously new simulation approaches, but it is exem-

plary of the power of graphical representation. Nodes, links, and transmission

radii constantly vary dynamically with network and node activity. This Java

applet conceptually guided the graphics implementation of DSS; however the

simulation here is tightly bound to the visualization and thus the antithesis to

DSS modularity.
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Future Work on DSS

The Distributed Sensors Simulator is barely in beta release, and it is far from

mature. The following are a few topics that will be pursued and explored in the

coming months, listed in order of highest priority.

7.1 TinyOS Integration

Due to the strong DSN development community’s use of TinyOS, the first

priority for the next release of DSS is to make it capable of running TinyOS appli-

cations in concert with TOSSIM. This will eliminate some of the issues present in

TOSSIM as noted in the previous chapter and provide DSS with advanced net-

working and task scheduling services. Implementing this integration should

not be too complicated as TOSSIM provides a socket-based interface for packet

injection into its virtual network, which can be modified to use the communica-

tion pipes of the WCM inside DSS. With this scheme, many TOSSIM processes

will each run a network of one node, and the virtual network will reside in DSS.
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7.2 Improved Wireless Channel Realism

Currently DSS uses error-free spherical wireless transmission with a trans-

mission strength fade-off of 1/r4 in the simulated radio channel. The nodes are

assumed to be on the ground, hence a factor of r4 as opposed to r2. In Heide-

mann et al. [16] and elsewhere, it has been established that this approximation

is fairly reasonable for simulating radio frequencies outdoors. DSS has no provi-

sion for indoor RF characteristics. Further, DSS does not simulate RF transmis-

sion collisions in general and specifically neither the hidden nor the exposed

station problems.

To address these issues, changes will be made in the WCM module. TOSSIM

supposedly simulates hidden stations by modifying node connectivity cells [25].

This is inaccurate since the hidden station problem is only an issue when the in-

terfering node is transmitting. By simply simulating transmission collisions,

and the feedback required to detect them, hidden and exposed stations come

about naturally. Collision simulation will require a little extra information as

well as some closer synchronization inside DSS. Each node will timestamp its

transmission and indicate transmission duration. The WCM will monitor in-

coming transmissions for collisions and will flag packets that have ’collided’ as

invalid. Nodes will treat these transmissions as garbage. For the timestamping

to be effective across a cluster of machines, each machine will have to run the

Network Time Protocol (NTP), providing synchronization down to the resolu-

tion of DSS: the millisecond. All this adds more complexity to the WCM, but

fortunately radios that transmit data on the order of tens of kilobits per second

are the norm for DSNs.

For DSS to be helpful in realizing the vision of ubiquity, it must be capable

of simulating indoor wireless transmissions. Currently there are two methods
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of doing this. Multipath raytracing is very accurate but requires both an ac-

curate model of the environment (see Section 7.4) and intensive computation.

Stochastic approximations require much less computation and ignore indoor

structures, but also tend to be intolerably inaccurate. As presented by Hassan-

Ali and Pahlavan [15], there is a hybrid stochastic method that comprehends

the effects of building structure but is not as painstaking as raytracing. Valida-

tion by the authors of this method has shown less than 5 dB in error, which is

certainly sufficient for DSS. The emphasis of DSS is on behavioral accuracy, not

necessarily perfectly simulated networks.

7.3 Robotic Mobility

Static DSNs are certainly very interesting and there is a great deal of work

yet to be done. Adding mobility to virtual nodes, however, opens up a whole

other realm of possibilities. Mobility and node actuation in general are currently

being coded for DSS. Upon completion, DSS will also serve robotics, and partic-

ularly micro-robotics, research in much the same ways that it currently serves

DSN development.

7.4 Environmental Geometry

Several phenomena and many indoor RF simulations require some knowl-

edge about the geometry of the surrounding environs. Simulated mobile nodes

must also be aware of obstacles, even if the applications that direct them are not.

For the two-dimensional case, the solution is as simple as requiring the addi-

tional user input of a bitmap of the coordinate field. This is simply the floor plan
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of a building or the location of trees and buildings outdoors. This extra input

is planned for the next release, primarily to support node mobility. The three-

dimensional case will likely require a layered approach, or perhaps something

even more complex. It is not expected for the distribution anytime soon.

7.5 Calibration Tools

The need for validation has already been well established. To ease vali-

dation against experiments, DSS should also include calibration tools that ac-

cept the output of certain live experiments to establish validity in an automated

fashion and to make or suggest adjustments where appropriate. Since DSS is

simulating a wide variety of hardware, it is useful to make certain adjustments

to internal timing elements whenever particular hardware configurations are

specified. The true utility of such a tool is yet to be determined.

7.6 Node Processor Emulation

Progressing even further into greater accuracy and greater complexity, one

more line of inquiry involves emulating the node processor itself. A similar

melding of simulation and emulation for an Atmel 8-bit microcontroller was

presented by Adkins and Fait [1]. Enfolding emulation would indeed yield

more accurate measurements of response time and power usage and may affect

failure recovery and other behaviors. Unfortunately, this may also cut down on

scalability and will definitely be limited to those processors for which emulators

exist.

There are plenty of other minor changes also on the drawing board. For
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instance, random failure is currently determined by a Gaussian distribution.

Other random distributions, such as Poisson, will soon be included. However

getting too specific in the interests of accuracy may in turn reduce the utility

and flexibility of DSS.
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Discussion

This concluding chapter discusses the utility of the DSS GUI in understand-

ing DSN applications, the next step in DSN data handling, and current work

with DSS. DSS embodies the unusual approach of behavioral software visualiza-

tion, which helps the developer understand the bigger picture that a given DSN

is attempting to capture. What neither DSS nor most DSNs cover is some mid-

dle step to get the copious data from the DSN to the user. Although beyond the

scope of this work, this issue of information dissemination is worth mention-

ing because it is so critical. This discussion ends with a description of the latest

project with which DSS is assisting.

8.1 Behavioral Simulation and Visualization

The major portion of the software visualization field speaks of animating

algorithms and computations, enabling visual programming and development,

and navigating through immense data fields [2]. That is not what this project

is about; rather the behavioral monitoring described here seeks to encompass
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inherent scalability and potential emergence issues, which rarely appear in the

visualization literature.

Information visualization involves graphical presentation of very large data

sets in an effort to understand coarse-grained trends in the data. Algorithm

visualization is frequently used as a teaching tool. These graphic representa-

tions frequently reflect the mechanics of a computation as it is performed. Code

visualization is essentially more complex forms of pretty printing and cross-

referencing. This is not to be confused with visual programming languages that

are often based on a schematic approach. Typically these methods attempt to

assist in the understanding of complex serial programs.

In contrast, behavioral visualization, at least in the case of DSS, facilitates

understanding of simple programs, which are rich in parallel interaction.

Visualization for DSNs is not unlike parallel program visualization. ”Un-

derstanding parallel programs is more challenging than understanding serial

programs because of the issues of concurrency, scale, communications, shared

resources and shared state,” [22]. These issues are inherent to DSNs as well.

For DSN development, interactive behavior of the system as a whole is the

most critical issue in ensuring performance and correctness. Thus DSS seeks to

graphically capture significant behaviors in the simulation.

8.2 Information Dissemination

If a DSN is a local area sensing unit, what provides this function for a wide

area? Gluing together numerous individual DSNs will not scale well and the

fine-grain of the available data will be lost. A structure capable of yielding sum-

mary information for a broad geography as well as the details from a single
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sensor is called for. Ideally this data collection infrastructure will echo some of

the advantages of DSNs: fault-tolerant, decentralized and self-organizing. Cur-

rently such distributed data delivery to the end user is fairly under developed.

Bonnet et al. dub data-dumping to a database as a ”warehousing” approach

and point out the inherent lack of scaling and the energy wastage of such a

scheme [3]. These authors propose a device database system that functions

much like TinyDB; it enables query processing within the DSN itself. This is

also similar to service discovery infrastructures such as Jini from Sun or Univer-

sal Plug and Play, which route queries directly to relevant devices. However,

these systems as still fairly localized.

Lim presents a distributed services architecture, which is reminiscent of por-

tions of the EYES OS architecture [27]. This three-layered scheme includes a

rather detailed application layer and a distributed systems layer composed of

a lookup server, a compositional server, and an adaptation server. The lookup

server tracks service-provider nodes; the compositional server can reconfigure

the services provided by a node or cluster of nodes; the adaptation server han-

dles dynamic topology issues and failure recovery. Although certainly more

suited to tying multiple DSNs together, this system also has scaling issues.

These approaches do not suffice to pull together and present information

gathered from over a very wide area, such as an entire state or even country.

This is a particularly relevant issue in supporting a nuclear detection system as

described in the next section.
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8.3 Using DSS

DSS is currently being used at LANL to model and explore a nuclear threat

reduction scenario.

?
!

!
!

!

!

!

?

Figure 8.1: Radiation Detection

In this scenario, a certain stretch of highway is being monitored for any

movement of radioactive material. This is a heterogeneous DSN, composed of

acoustic sensors in blue, radar sensors in brown, and radiation detectors directly

beside the road in green.

As a car passes, acoustic and radar sensors determine the size, class, and

speed of the vehicle by combining the sensor data intelligently. The radiation

detectors (Figure 8.3) pick up gammas from an insufficiently shielded source,
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whenever one is present. If this event is determined to be a threat, an alert is

routed to an exfiltration point where it is then transmitted to the authorities.

DSS, coupled with nuclear source simulation software, will help investigate

sensor size, range, and effectiveness. DSS will also demonstrate the reliability

and behavior of data fusion algorithms for detection of special nuclear materi-

als, as well as this scenario’s position in the domain of the development issues

previously discussed.

Further use and modification of DSS will undoubtedly further strengthen its

utility to the DSN community.

The three following appendices consist of a) pseudocode for the basic TDOA

algorithm without the CLS filter, b) the informal HOWTO user documentation

for DSS in LinuxDoc style, and c) an example Java language script that calculates

the time and strength of detection for an acoustic event.
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Appendix 1

TDOA Algorithm

From Dreicer et al. [5]:

Given a constant signal velocity, the location of a source can be determined by mea-

suring the event propagation time difference at several distributed observation points.

Assuming a constant velocity of, for instance, a sound in air, each pair of observation

points (sensor nodes) can constrain the source location (x0, y0, t0) on a hyperbola as

[(xi − x0)
2 + (yi − y0)

2]
1

2 − [(xj − x0)
2 + (yj − y0)

2]
1

2 = vs(ti − tj) | i 6= j (A-1.1)

The intersection of three hyperbolas which can be determined by four independent

measurements can uniquely specify the location of a source. The set of hyperbolas can

be summarized as:

[(x1 − x0)
2 + (y1 − y0)

2]
1

2 − [(x2 − x0)
2 + (y2 − y0)

2]
1

2 = vs(t1 − t2) (A-1.2)

[(x1 − x0)
2 + (y1 − y0)

2]
1

2 − [(x3 − x0)
2 + (y3 − y0)

2]
1

2 = vs(t1 − t3) (A-1.3)
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[(x1 − x0)
2 + (y1 − y0)

2]
1

2 − [(x4 − x0)
2 + (y4 − y0)

2]
1

2 = vs(t1 − t4) (A-1.4)

Given:

A1 = t12x31 − t13x21 (A-1.5)

A2 = t12x41 − t14x21 (A-1.6)

B1 = t12y31 − t13y21 (A-1.7)

B2 = t12y41 − t14y21 (A-1.8)

C1 =
1

2
[t13(v

2

s t
2

12 + x2

1 − x2

2 + y2

1 − y2

2) − t12(v
2

s t
2
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1 − x2

3 + y2

1 − y2

3)] (A-1.9)

C2 =
1

2
[t14(v

2

s t
2

12 + x2

1 − x2

2 + y2

1 − y2

2) − t12(v
2

s t
2

14 + x2

1 − x2

4 + y2

1 − y2

4)] (A-1.10)

Substituting equations A-1.5 - A-1.10 appropriately:

x0 = (B2C1 − B1C2)/(B2A1 − B1A2) (A-1.11)
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y0 = (A2C1 − A1C2)/(A2B1 − A1B2) (A-1.12)

t0 =
1

4

4∑

i=1

ti − [(x1 − x0)
2 + (y1 − y0)

2]
1

2 (
1

vs

) (A-1.13)
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Distributed Sensors Simulator

HOWTO

Distributed sensor networks present a novel and highly complex environ-

ment with difficulties and opportunities we are just beginning to explore.

The promise of DSNs extends from Homeland Security monitoring to con-

ducting instant and remote inventories to ecological surveys. The Dis-

tributed Sensors Simulator (DSS) allows the DSN developer to specify not

just the network topology and components, but also customizable node

failures and even the very physics of source detection - all in the interests

of maintaining maximum flexibility and applicability. This HOWTO will

provide a step-by-step guide to running simulations and program debug-

ging within DSS.

1 Introduction

Distributed Sensor Networks are the up-and-coming, number-one means of realizing

the vision of ubiquitous computing. Whether you’re using TinyOS or creating roll-
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your-own DSN services, the Distributed Sensors Simulator can get you up and running

sooner and smoother. With DSS, you can develop and debug DSN applications and

study the effects of parallel interaction, scaling, and physical embedding - all indepen-

dently of hardware complications.

For a more in-depth introduction to DSNs see the original Smart Dust site, the

TinyOS site, or this updated Smart Dust site.

Programmers can use the infrastructure of DSS to test and debug applications, re-

searchers can conduct algorithm experimentation, and even sensor deployment can be

facilitated with DSS since it enables easy visualization of an otherwise opaque opera-

tion.

This HOWTO will provide a step-by-step guide to configuring and running DSS.

1.1 Acknowledgments

Thanks go to the organizations that funded this work: namely the NIS-3 and STB-EPO

Groups at Los Alamos National Laboratory.

I’d also like to recognize the members of the DSN-CC Project at LANL: Jared Dre-

icer, Aric Hagberg, Paul Johnson, Angela Mielke, Robert Nemzek, James Rutledge, and

David Torney.

Finally and of course most importantly, my graduate advisor, Barney Maccabe, for

his invaluable guidance throughout this project.
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2 Preparation

Aside from setting up the software, before configuring and programming for DSS, you

really should have an embedded situation in mind that you want to simulate. If you are

looking to merely familiarize yourself with the project, the distribution includes some

sample pre-configured scenarios.

2.1 DSS Setup

So you’ve downloaded the DSS distribution (from the DSS website), now what?

First you must have installed Java 2 version 1.4 or later - you can get it on the web

from java.sun.com.

Next, create a working directory for DSS and unpack the distribution there. Execute

preinstall, this will add the $DSSHOME environment variable to your shell. Run make,

this will compile the simulator, gui and example applications.

You are now ready to run DSS. All reference to files from here on will be relative to

his working directory (i.e. $DSSHOME).

2.2 Considerations

Before creating your own DSN, I recommend that you:

Determine Sensor Embedding: This may be as simple as a network of acoustic sen-

sors where the speed of sound is a known constant, or it might be as complicated

as imaginable - for instance, neutron detection alone is highly dependent on the

geometry of the surrounding landscape which must be modeled for the simula-

tion to have any accuracy. Carefully consider where you will cut corners - and

why.
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Determine the Network Topology: This is primarily a coverage issue, with an im-

plicit goal of collecting as much data as feasible. Fortunately, the DSN topology

is easily changed and can be widely experimented with. Just be aware that topol-

ogy changes will often also change some operational assumptions.

Determine How to Solve your Problem: Find/create the algorithms and data rout-

ing that apply.

Doing all this should ease the steps of configuration.

3 Running DSS

If you are going to configure your DSN by hand, skip to Section 4 for now and return

here when you want to run the simulator. If you are a first-time user however, I’d

recommend that you read this section now and configure your DSN interactively.

The simulator is disjoint from its user interface for remote viewing and control. You

may combine any grouping of XML configurations by entering the name of a configura-

tion file on the command line when invoking the simulator form the working directory

($DSSHOME), as

./DSS-start <config file>

The format of this file is simple:

XML: dsn-config/xml/<my-topo>.xml
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FAIL: dsn-config/fail/<my-fails>.xml

ENVIR: dsn-config/envir/<my-sources>.xml

OUTPUT: <my-results.out>

We will create these XML files in Section 4.

3.1 ... Locally

If you are using just a single machine for both viewing and simulating, you will need

two terminals. Again, from the working directory, enter:

./DSS-start

to start the simulator. Once you see ”Initialization successful”, in the

other terminal type:

./DSS-view

and the GUI should start (see Figure A-2.1).

3.2 ... Remotely

Viewing a simulation across a network is almost as easy as it is on a single box. The

simulator serves the viewer through ports 25436 and 25438, in case you need to modify

a firewall. The simulator is started as above, but the GUI requires that you specify the

host that the simulator is on. For example:
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Figure A-2.1 Simulation Topology Screen

santafe$ ./DSS-start magnus$ ./DSS-view santafe

Again, waiting for the simulator to issue ”Initialization successful” before

invoking the viewer.
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3.3 Cluster Computing

To simulate over a cluster (and thereby maintain near real-time viewing), the HOSTS

must have a listing of each machine to be used. You will need to have SSH setup prop-

erly and running ssh-agent for passwordless connections (see the Gentoo Keychain, for

an easy solution).

IMPORTANT

Simulation over a cluster is currently unsupported in this release.

4 Configuring the simulation

This is an ordered five step process. The simulator requires that certain portions of your

DSN configuration be completed before others. Fortunately, the steps get progressively

easier.

4.1 Create the Application(s)

Each application you create must have a subdirectory under nodes/, preferably named

for the application itself.

Currently the node API supports C++ and (by using ”extern C”) C code. Your

main application code must be in the file Algorithm.cpp in your application direc-

tory, but may be supported by various other files. The function that handles the main
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processing is of course int nodeProcessing(). Highlights of the API follow, see

Algorithm.h for details.

• You must periodically call mynode->getTimer()->getServerTime() for

synchronization with the sensor embedding.

• Communication takes place using

int recvd = mynode->getRadio()->receiv( char* buffer,

int isblocking )

and

mynode->getRadio()->send( char* buffer, int isblocking )

• Detections interrupt blocking radio receives and this data can be retrieved by:

if ( recvd < 0 && errno == EINTR )

int data_points = mynode->detectSource( char* type,

char** data, int seconds );

• If you are modeling power usage, radio transmission and reception costs are

built-in and depend on the values you enter in the radio configuration (see Sec-

tion 4.3). Additionally, you must call mynode->getPower()->use(double

mA drawn) after every detection, and some number of lines of your code.

To port an existing application, the original main() function must be renamed

nodeProcessing() and put into Algorithm.cpp, taking particular care to remove

all hardware-specific code.

If you are going to use TinyOS, you must first apply the patch for the release 1.0

distribution (see nodes/tinyos/patch.readme). Then copy the tinyos directory,
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to an appropriately named directory under nodes/. Change the $DSS ARCH/node

script to point to your TOSSIM application.

IMPORTANT

TinyOS support is not implemented for this beta release

4.2 Compose the Phenomenology Script(s)

These define which nodes detect an event and when. The scripts are written in a Java-

like scripting language. The arguments for your scripts will always be (as Java classes):

Double Event_X

Double Event_Y

Double Event_Z

Long Time Double Node_X

Double Node_Y

Double Node_Z

String Args

The return value is:
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String Effect

Since this return value is parsed in the simulator, its structure is moderately strict:

"<time of detection(ms)> <data_string_1> ... <data_string_n>"

The data strings are packed up into the event that will be shipped to the appropriate

node. These are the data points that are read in by detectSource(...) (see Section

4.1 for more details).

Beyond these requirements, you may include any arbitrary computation using Java

language constructs.

TIP

While you may use the import keyword successfully for packages

native to the Java distribution, importing external packages usually

causes the simulator to fail - this may or may not be a configuration

issue to be addressed in a future release.

Here is a simple example script:

import javax.vecmath.*;
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double mps = 343.0;

String Calculate( Double x, Double y, Double z, Long t,

Double src_x, Double src_y, Double src_z, String args ) {

double dist = (new Point3d(x,y,z)).distance(new

Point3d(src_x,src_y,src_z));

return "" + (t.longValue() + (long)((dist/mps) * 1000));

}

Effect = Calculate( NodeX, NodeY, NodeZ, Time,

Event_X, Event_Y, Event_Z, Args );

These scripts are located in dsn-config/phenom/.

WARNING

The simulation will not tolerate a buggy script. In case of

a bug here, watch for Java exceptions somewhere within the

koala.dynamicjava package.
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Figure A-2.2 Network Configuration Screen

4.3 Specify the Node Topology

Interactively

From the menu, select Configuration → New Configuration to get the network config-

uration screen (see Figure A-2.2).

Right-click for a menu and Add a Node, then fill in the coordinates or randomize.

NOTE

The field is 600 x 600 meters (unless you use the ‘zoom’ menu

option), so scale accordingly.
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WARNING

Zooming is not implemented in this release, so be particularly

careful when scaling the topology field.

For this first node, there will only be the group ‘New’. Clicking Add Node to Net-

work will bring up the group configuration (Figure A-2.3). You must name the group

and specify the application these nodes will run. You can only choose apps that already

exist.

Figure A-2.3 Group Config Screen

You can configure the radio, processor and power source, but the only fields that

are currently in use are radio range, power draw for both radio and processor, and the

power source strength. Other fields will become effective in future releases, but may

now be used as a reference.

Clicking Add a new Sensor attaches a sensor as defined in the Phenomenology

Script (Section 4.2) to this node. Only those detectors that are predefined as above will
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be available from the list.

Actuators are not enabled for this release.

Click Add Group and you may now add more nodes to this group or define further

groups as above.

XML

Due to the complexity of the network XML file, you can instead import a simpler ver-

sion. Using the incomplete example below, simply fill in the values for your DSN -

expanding with more <nodes> and <groups> as appropriate. To view all possible

value options, examine the Network DTD at dsn-config/util/dsnsim.dtd. For

greater familiarity with XML in general, see XML.com or XML.org.

<?xml version="1.0" encoding="UTF-8"?>

<Network name="./dsn-config/xml/default.xml">

<groups>1</groups>

<Group>

<Node id="0" random="false">

<x>148</x>

<y>26</y>

<z>3</z>

</Node>

<Node id="1" random="true"/>

<application>default</application>

<processor id="CoTS">

<speed_MHz>100</speed_MHz>

<flash_KB>64</flash_KB>
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<sram_KB>8</sram_KB>

<power_draw_active_mA>2.1</power_draw_active_mA>

<power_draw_sleeping_mA>0.0070</power_draw_sleeping_mA>

</processor>

<radio id="strong">

<range_base_meters>150.0</range_base_meters>

</radio>

<sensors>1</sensors>

<sensor id="0">

<type>acoustic</type>

</sensor>

</Group>

</Network>

Once complete, import this file by selecting Configuration → Import a Config-

uration from the Simulation Topology menu. The simple XML files to import are in

dsn-config/conf/ by default and save as network XML files in dsn-config/xml/.

4.4 Specify the Source(s)

Interactively

Right-click anywhere but on a node, and select Configure an Event Source from either

one of the Simulation Topology or the Network Configuration screens. This will spawn

the Source Configuration screen (Figure A-2.4).
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Figure A-2.4 Source Configuration Screen

Right-click anywhere and select Add Source. At this location, you will now have

an unconfigured source labeled as such.

Right-click on this source point and select Configure Source. The source type must

be the name of the corresponding phenomenology script. You may set precise x, y, z and

time coordinates here. Any argument string required by the associated physics script.

Display color for differentiating between source types. Whether this source is to be

continuous. Then Set Source.

The source point can be dragged and dropped in the lower panels for y/z, x/z, and

time coordinates respectively. In the top panel, dragging and dropping adds a new

source moment to a continuous source which can be repositioned via the lower panels.
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XML

Because the Source (and the Failure) XML files are much simpler, we don’t need the

intermediary of importing. Here is a basic single-source XML example:

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1_01" class="java.beans.XMLDecoder">

<object class="lanl.dsn.sim.Environment">

<void property="sources">

<void method="add">

<object class="lanl.dsn.sim.Source">

<void property="args">

<string>120 35</string>

</void>

<void property="seg_times">

<void method="add">

<long>40000</long>

</void>

</void>

<void property="seg_x">

<void method="add">

<double>50.0</double>

</void>

</void>

<void property="seg_y">

<void method="add">

<double>100.0</double>

</void>

</void>

<void property="seg_z">
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<void method="add">

<double>1.0</double>

</void>

</void>

<void property="start_time">

<long>40000</long>

</void>

<void property="type">

<string>sound</string>

</void>

</object>

</void>

</void>

</object>

</java>

4.5 Specify any Failures

Interactively

From the Simulation Topology screen, right-click on a node and select Configure Fail-

ure.

Choosing the Interval button indicates that the failure will repeat - this is particu-

larly useful with randomization as the interval time will change at each fail of the node.

Alternatively, the Time button indicates a single failure at this node.

You must define a replacement application - choosing the original will simulate a
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restart.

NOTE

You may specify multiple ‘failures’ to various replacements,

thereby simulating recovery - or any other desired application

switching behavior.

XML

The XML files that specify failures are in dsn-config/fail/ and are of the form:

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.1_01" class="java.beans.XMLDecoder">

<object class="lanl.dsn.sim.FaultList">

<void property="fails">

<void method="add">

<object class="lanl.dsn.sim.Failure">

<void property="random">

<boolean>true</boolean>

</void>

<void property="time">

<long>240000</long>

</void>

</object>

</void>

</void>

</object>
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</java>

You’re ready to go - just click ”Start”!
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Example Phenomenology Script

/∗∗

Template s c r i p t f o r def in ing phenomenal event timing

arguments are always :

Double Event X |

Double Event Y | source l o c a t i o n

Double Event Z |

Long Time | m i l l i s e c o n d s

Double Node X |

Double Node Y | node l o c a t i o n

Double Node Z |

S t r i n g Args | a d d i t i o n a l input

and return v a r i a b l e :

S t r i n g E f f e c t

∗∗/

/∗∗ sound . djava

” Errors of the order of 2 0dBA could be introduced i f

weather i s not taken i n t o account . ”

i . e . r e f r a c t i o n , turbulence , atmospheric absorpt ion

∗∗/

double KELVIN TEMP ( double c e l c i u s ) {

return c e l c i u s + 2 7 3 . 1 6 ;

}
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/∗∗∗ C a l c u l a t i n g sound v e l o c i t y ∗∗∗/

double VELOCITY ( double c ) {

// phys ica l v a r i a b l e s − must be c a l c u l a t e d /measured f o r exac tness

double MOLECULAR WT DRY = 0 . 0 2 8 9 5 ; // kg/mol

double MOLECULAR WT VAPOR = 0 . 0 1 8 ; // kg/mol

double MOLECULAR WT = MOLECULAR WT DRY;

// phys ica l cons tants

double ADIABATIC = 1 . 4 0 0 5 ;

double GAS CONST = 8 . 3 1 4 ; // J /mol∗K

return Math . s q r t ( ( ADIABATIC ∗ GAS CONST ∗ KELVIN TEMP( c ) ) / MOLECULAR WT) ;

} // m/s

/∗∗∗ C a l c u l a t i n g sound a t t e n u a t i o n ( over s i m p l i f i e d ) ∗∗∗/

double INTENSITY ( double power , double range ) {

return ( power / ( 4 . 0 ∗ Math . PI ∗ Math . pow ( range , 2 . 0 ) ) ) ;

} // watts/mˆ2

double Distance ( double x1 , double y1 , double z1 ,

double x2 , double y2 , double z2 ) {

return Math . s q r t ( Math . pow ( ( x2 − x1 ) , 2 ) + Math . pow ( ( y2 − y1 ) , 2 ) +

Math . pow ( ( z2 − z1 ) , 2 ) ) ;

}

S t r i n g C a l c u l a t e ( double x , double y , double z , long snd time ,

double snd x , double snd y , double snd z , S t r i n g args ) {

S t r i n g B u f f e r sb = new S t r i n g B u f f e r ( ) ;

double snd strength = 0 . 0 ;

double ce lc ius temp = 3 5 . 0 ;

i f ( args ! = null && args . length ( ) > 0 ) {

i n t i =0 ;

i n t j =args . indexOf ( ” ” , 0 ) ;

i f ( j > 0 ) {

ce lc ius temp = Double . parseDouble ( args . subs t r ing ( i , j ) ) ;

i = j +1 ;

j =args . indexOf ( ” ” , i ) ;

i f ( j ! = − 1 )

snd strength = Double . parseDouble ( args . subs t r ing ( i , j ) ) ;

else

snd strength = Double . parseDouble ( args . subs t r ing ( i , args . length ( ) ) ) ;

} else

ce lc ius temp = Double . parseDouble ( args . subs t r ing ( i , args . length ( ) ) ) ;
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}

double s n d d i s t = Distance ( x , y , z , snd x , snd y , snd z ) ;

i f ( s n d d i s t < 1 5 0 ) {

double snd mps = VELOCITY ( ce lc ius temp ) ;

sb . append ( ”” + ( snd time + ( long ) ( ( s n d d i s t /snd mps ) ∗ 1 0 0 0 ) ) ) ;

// time of d e t e c t i o n ( ms)

i f ( snd strength ! = 0 . 0 )

sb . append ( ” ” + INTENSITY ( snd strength , s n d d i s t ) ) ;

// s t r e n g t h of d e t e c t i o n

}

return sb . t o S t r i n g ( ) ;

}

E f f e c t = C a l c u l a t e ( Node X . doubleValue ( ) , Node Y . doubleValue ( ) ,

Node Z . doubleValue ( ) , Time . longValue ( ) ,

Event X . doubleValue ( ) , Event Y . doubleValue ( ) ,

Event Z . doubleValue ( ) , Args ) ;
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